Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 253: 116165, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437747

RESUMO

The detection of circulating tumor DNA (ctDNA), as a practical liquid biopsy technique, was of great significance for the study of cancer diagnosis and prognosis. However, reported methods for detection ctDNA still have some limitations, such as tedious process and high cost. In this study, CsPbBr3 nanosheet (CsPbBr3 NS) with high water stability was prepared by etching, and its fluorescence intensity could be stably stored for 1 year. The Ti3C2Tx possessed high quenching efficiency for CsPbBr3 NS and the HOMO-LUMO orbital study revealed that the PET mechanism was responsible for fluorescence quenching. And the Ti3C2Tx showed stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). The probe ssDNA could be adsorbed on the surface of Ti3C2Tx through π-π stacking. After the targets were recognized by probe ssDNA to form dsDNA, its affinity with Ti3C2Tx decreased and the active site of Ti3C2Tx recovered, causing a high quenching efficiency on CsPbBr3 NS. Based on this, a label-free fluorescent biosensor was designed for the sensitive detection of ctDNA (EGFR 19 Dels for non-small cell lung cancer, NSCLC). Under the optimal experimental conditions, this biosensor exhibited a detection limit of 180 fM and a linear range of 50 pM-350 pM with amplification of magnetic beads through strand displacement reaction. In addition, this sensor was applied to the detection of ctDNA in serum samples and cells lysates. This method for ctDNA detection was expected to have great potential for biomarker detection in the field of liquid biopsy.


Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Água , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples , Corantes Fluorescentes/química
2.
Environ Res ; 250: 118499, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38368921

RESUMO

The practical, sensitive, and real-time detection of heavy metal ions is an essential and difficult problem. This study presents the design of a unique magnetic electrochemical detection system that can achieve real-time field detection. To enhance the electrochemical performance of the sensor, Fe2O3@C-800, Co/CoO@/C-600, and CoFe2O4@C-600 magnetic composites were synthesized using three MOFs precursors by the solvothermal method. And the morphology structure and electrochemical properties of as-prepared magnetic composites were researched by X-ray diffraction (XRD), Scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), specific surface area and porosity analyzer (BET) and differential pulse voltammetry (DPV). The results shown that these composites improve conductivity and stability while preserving the MOFs basic frame structure. Compared with the monometallic MOFs-derived composites, the synergistic effect of the bimetallic composite CoFe2O4@C-600 can significantly enhance the electrochemical performance of the sensor. The linear range for the detection of lead ions was 0.001-60 µM, and the detection limit was 0.0043 µM with a sensitivity of 22.22 µA µM·cm-2 by differential pulse voltammetry. The sensor has good selectivity, stability, reproducibility and can be used for actual sample testing.

3.
Analyst ; 148(19): 4885-4896, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37650747

RESUMO

Technological advances in the detection of circulating tumor DNA (ctDNA) have made new options available for diagnosis, classification, biological studies, and treatment selection. However, effective and practical methods for analyzing this emerging class of biomarkers are still lacking. In this work, a fluorescent biosensor was designed for the label-free detection of ctDNA (EGFR 19 del for non-small cell lung cancer, NSCLC). The biosensor was based on the fact that MnO2 nanosheets (MnO2 NSs) have stronger affinity towards single-stranded DNA (ssDNA), as compared with double-stranded DNA (dsDNA). As a high-performance nanoenzyme, MnO2 NSs could oxidize dopamine (DA) into fluorescent polydopamine nanoparticles (FL-PDA NPs), which could be used as a fluorescence signal. The probe ssDNA could be adsorbed on the surface of MnO2 NSs through π-π stacking, and the active site would be masked, causing a lower fluorescence. After the targets were recognized by probe ssDNA to form dsDNA, its affinity for MnO2 NSs decreased and the active site recovered, causing a restored fluorescence. It was verified that Mn ions, •OH radicals and electron transfer were the important factors in the catalytic oxidation of DA. Under the optimal experimental conditions, this biosensor exhibited a detection limit of 380 pM and a linear range of 25-125 nM, providing reliable readout in a short time (45 min). This sensor exhibited outstanding specificity, stability and reproducibility. In addition, this sensor was applied to the detection of ctDNA in serum samples and cell lysates. It is demonstrated that FL-PDA NPs can be used as a fluorescence signal for easy, rapid and label-free detection of ctDNA without any other amplification strategies, and the proposed strategy has great potential for biomarker detection in the field of liquid biopsy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Compostos de Manganês , Óxidos , Reprodutibilidade dos Testes , DNA de Cadeia Simples , Corantes , Dopamina
4.
Anal Sci ; 39(1): 33-42, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36208409

RESUMO

In this study, a new enzyme-free glucose sensor was constructed using the transition metal-based composite material. The synthesis of ZIF-67 entailed the addition of NiO with high catalytic performance. Two-dimensional NiO/Co3O4@C heterojunctions were obtained via pyrolysis of NiO@ZIF-67 in the air at a temperature of 500 â„ƒ. The enzyme-free glucose sensor Nafion/NiO/Co3O4@C/GCE was constructed by modifying NiO/Co3O4@C on a glassy carbon electrode (GCE). The performance of the modified electrode was tested via cyclic voltammetry (CV) and a time-current curve (i-t curve). The linear ranges of the modified electrode were 5 -1000 µM and 1.0- 4.0 mM with sensitivities of 690 and 215.4 µA mM-1 cm-2, respectively. The detection limit was 2.28 µΜ (S/N = 3). The recoveries were in the range of 98.9-99.7% during the detection of real samples. The prepared sensor Nafion/NiO/Co3O4@C/GCE showed excellent electrocatalytic properties with superb reproducibility, stability and anti-interference capability. The sensor has been successfully utilized to determine glucose in real serum samples.


Assuntos
Glucose , Níquel , Reprodutibilidade dos Testes , Níquel/química , Carbono/química , Eletrodos
5.
Mikrochim Acta ; 189(10): 391, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138259

RESUMO

An ultrasensitive electrochemical biosensor was designed for the rapid label-free detection of circulating tumor DNA (ctDNA, EGFR 19 Dels for non-small cell lung cancer, NSCLC). We linked the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) with Ni(II) ions into the two-dimensional porous conductive metal-organic frameworks (MOFs), which is termed Ni-catecholates (Ni-CAT). Then, the AuNPs/Ni-catecholates/carbon black/polarized pencil graphite electrode (AuNPs/Ni-CAT/CB/PPGE) was obtained by electrodeposition of AuNPs on the surface of PPGE modified with Ni-CAT/CB composite materials. The AuNPs/Ni-CAT/CB/PPGE were used for label-less detection of ctDNA, with a total detection time of only 30 min. Under optimal detection conditions, the AuNPs/Ni-CAT/CB/PPGE sensor exhibited excellent detection performance with good linear response to ctDNA over a wide concentration range and the detection limit down to the femtomolar level. The sensor was applied to the determination of ctDNA in serum samples with high sensitivity. This simple, efficient, and expeditious method has practical value in liquid biopsy of ctDNA and has potential for development in early detection, treatment, and prognosis of tumors. Herein, an ultrasensitive electrochemical biosensor was designed for the rapid label-free detection of ctDNA (EGFR 19 Dels for non-small cell lung cancer, NSCLC). We linked the highly conjugated tricatecholate, 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) with Ni(II) ions into the two-dimensional porous conductive metal-organic frameworks (MOFs), which is termed as Ni-catecholates (Ni-CAT). Then, the AuNPs/Ni-catecholates/carbon black/polarized pencil graphite electrode (AuNPs/Ni-CAT/CB/PPGE) was obtained by electrodeposition of AuNPs on the surface of PPGE modified with Ni-CAT/CB composite materials. The AuNPs/Ni-CAT/CB/PPGEs were used for label-less detection of ctDNA, with a total detection time of only 30 min. Under optimal detection conditions, the AuNPs/Ni-CAT/CB/PPGE sensor exhibited excellent detection performance with good linear response to ctDNA in the concentration range of 1 × 10-15 M to 1 × 10-6 M and with a detection limit as low as 0.32 fM. The sensor was applied for determination of ctDNA in serum samples and gave high sensitivity. This simple, efficient and expeditious method has practical value in liquid biopsy of ctDNA and has potential for development in early detection, treatment and prognosis of tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , DNA Tumoral Circulante , Grafite , Neoplasias Pulmonares , Nanopartículas Metálicas , Estruturas Metalorgânicas , Receptores ErbB , Ouro , Humanos , Neoplasias Pulmonares/diagnóstico , Fenantrenos , Fuligem
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121044, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35220051

RESUMO

In this work, a nitrogen-doped carbon dots (CDs) was successfully synthesized by hydrothermal synthesis of polyethylenimine (PEI) and citric acid. The as-prepared CDs suffered from aggregation-caused quenching (ACQ) with a high concentration, but after adding adenosine triphosphate (ATP), the CDs aggregated. The generation of aggregates caused the rotation of the surface groups on CDs and reduced the non-radiation decay. The QY of CDs in water was 9.25 %, and increased to 16.60 % and 63.38% in the addition of 100 and 1000 µM ATP. And then, the enhancement of the radiation rate led to the aggregation induced enhancement effect (AIEE). Moreover, we also found that the proportion of precursors for CDs synthesis was a key factor in the occurrence of AIEE. Therefore, such CDs would be excellent candidates as fluorescent probes for the label-free detection of ATP. Our proposed method exhibited simple and easy preparation of nanoprobe, quick response (3 min), wide range of linear rage (1-2000 µM) and eco-friendly. In addition, the method performed successfully as a "turn-on" sensor for detection of ATP in the tablet with a recovery of 100.1~106.9% and RSD below 3.5%.


Assuntos
Carbono , Pontos Quânticos , Trifosfato de Adenosina , Corantes Fluorescentes , Limite de Detecção , Nitrogênio , Espectrometria de Fluorescência/métodos
7.
Anal Chem ; 93(39): 13219-13225, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34546701

RESUMO

Benefiting from the noble metal nanoparticle core and organic porous nanoshell, plasmonic metal-organic frameworks (MOFs) become a nanostructure with great enhancement of the electromagnetic field and a high density of reaction sites, which has fantastic optical properties in surface plasmon-related fields. In this work, the plasmon-driven interfacial catalytic reactions involving p-aminothiophenol to 4,4'-dimercaptoazobenzene (trans-DMAB) in both the liquid and gaseous phases are studied in plasmonic MOF nanoparticles, which consist of a Ag nanoparticle core and an organic shell (ZIF-8). The surface-enhanced Raman spectroscopy (SERS) spectra recorded at the plasmonic MOF in an aqueous environment demonstrate that the reversible plasmon-driven interfacial catalytic reactions could be modulated by a reductant (NaBH4) or oxidant (H2O2). Also, the situ SERS spectra also point out that plasmonic MOF (AgNP@ZIF-8) nanoparticles exhibit much better catalytic performance in the H2O2 solution compared to pure Ag nanoparticles for the anti-oxidation caused by the MOF shell. It is surprising that although there is greater SERS enhancement obtained at pure Ag nanoparticles, the plasmon-driven interfacial catalytic reactions only occur at plasmonic AgNP@ZIF-8 nanoparticles in the gaseous phase. This interesting phenomenon is further confirmed and analyzed by simulated electromagnetic field distributions, which could be understood by the effective capture of gaseous molecules by the organic porous nanoshell. Our work not only explores the plasmonic MOF nanoparticles with unique optical properties but also strengthens the understanding of plasmon-driven interfacial catalytic reactions.

8.
Anal Methods ; 12(41): 4967-4976, 2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33006333

RESUMO

In this work, we designed and synthesized a nanocomposite comprising an amine-functionalized metal organic framework (UiO-66-NH2), a multiwalled carbon nanotube@reduced graphene oxide nanoribbon (MWCNT@rGONR) and a covalent organic framework (COF) synthesized using melamine and cyanuric acidmonomers via polycondensation (represented by MCA). The UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite was used as a sensitive platform for an electrochemical aptasensor to detect kanamycin (kana). Owing to the rich chemical functionality, amino-rich structure and excellent electrochemical activity, the cDNA strands with terminal amino groups can not only anchor over the UiO-66-NH2/MCA/MWCNT@rGONR surface but also penetrate into the interior of porous UiO-66-NH2/MCA/MWCNT@rGONR networks. The characterization of the UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite was performed by scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Furthermore, cyclic voltammetry (CV) and square wave voltammetry (SWV) were employed for the electrochemical performance study of this biosensor. The results indicated that the UiO-66-NH2/MCA/MWCNT@rGONR nanocomposite exhibited high bioaffinity toward the aptamer and the lowest limit of detection at 13 nM (S/N = 3) within a linearity of the kana concentration of 25-900 nM. In addition, it possessed great repeatability, stability and selectivity and obtained satisfactory recovery results in the real analysis of fish meat and milk, indicating the great potential for analytical measurements in food safety.


Assuntos
Nanocompostos , Nanotubos de Carbono , Animais , Grafite , Canamicina , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Anal Sci ; 35(4): 441-448, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30606912

RESUMO

In this paper, an ultrasensitive electrochemical biosensor based on carboxylated multi-walled carbon nanotube/molybdenum disulfide composites (MWCNTs-COOH/MoS2) for the detection of KRAS gene is described. An easy, low-cost method, named one-step hydrothermal, was used for the synthesize of MWCNTs-COOH/MoS2 nanocomposites, and scanning electronic microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used for characterizing the prepared composites. Furthermore, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed for an electrochemical performance study of this biosensor. Under optimal conditions, the detection limit of target DNA achieved down to 3 fM (S/N = 3) with high sensitivity; the linear range with the logarithm of the concentrations of target DNA varied from 1.0 × 10-14 to 1.0 × 10-7 M. Finally, the practicality of our proposed sensor was verified by a determination of the KRAS gene in human serum samples with good accuracy and high precision due to the excellent conductivity and large active surface area of the MWCNTs-COOH/MoS2 nanocomposites. This proposed biosensor thus provides a practical method for the rapid and sensitive analysis of gene detection.


Assuntos
Técnicas Biossensoriais , Ácidos Carboxílicos/química , DNA/química , Dissulfetos/química , Técnicas Eletroquímicas , Molibdênio/química , Nanotubos de Carbono/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Humanos , Tamanho da Partícula , Proteínas Proto-Oncogênicas p21(ras)/sangue , Propriedades de Superfície
10.
Bioelectrochemistry ; 126: 156-162, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30597452

RESUMO

A minimally-disruptive portable electrochemical system is constructed by combining a hand-held syringe as reservoir with disposable screen-printed electrodes (SPEs) modified with a simple and efficient yeast/Co3O4/Au material for lead determination by a square-wave voltammetry (SWV) method. Not only can it preserve the operation and advantages of the conventional electrochemical procedure, but it also integrates sampling, filtering and analysis to make the determination of lead convenient and effective at higher and lower concentration levels. This is the first report of a microbial biosensor based on active yeast crosslinked to Co3O4/Au particles using glutaraldehyde as the crosslinking agent. The determination process is simplified by introducing a fiber filter and takes only 150 s with the developed system, which illustrates its simplicity, speed and detection accuracy. Also, the design shows a wide log-linear dynamic range (LDR) from 10-8 to 10-14 g·L-1, with a limit of detection (LOD) of 3.45 × 10-15 g·L-1 (S/N = 3). Additionally, the proposed system was used to determine lead in blood samples, which demonstrated the potential of this biosensor for use in practical applications. Furthermore, this study provides a basis for the development of microscale blood devices for lead measurement.


Assuntos
Técnicas Biossensoriais/instrumentação , Cobalto/química , Técnicas Eletroquímicas/instrumentação , Ouro/química , Chumbo/sangue , Óxidos/química , Leveduras/química , Eletrodos , Desenho de Equipamento , Humanos , Limite de Detecção
11.
Talanta ; 192: 368-373, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348404

RESUMO

High-performance measurement of methyl parathion (MP) is of great importance in both agricultural and environmental surveillance. Herein, we presented a facile fluorescent biosensor to indirectly measure MP using N-doped carbon dots (N-CDS) based on the inner filter effect (IFE). Methyl parathion was employed as the substrate of alkaline-catalytic hydrolysis, and p-nitrophenol (p-NP) was obtained by rapid the hydrolysis reaction under strong alkaline conditions without enzymes. Interestingly, the absorption band of p-NP appeared at 403 nm, which presented an overlapping spectrum with the excitation of N-CDs (410 nm). Due to its strong molar absorptivity, p-NP played the part of a powerful absorber in IFE to influence the excitation of fluorophore (N-CDs). Through the competitive absorption, the fluorescence intensity of N-CDs decreased extremely. With optimum conditions selected, the fluorescent sensor presented a concentration-dependent fluorescent response (ΔF) to MP ranging from 0.075 to 15 ppm (R2 =0.9956). The limit of detection was calculated to be 1.87 ppb (S/N = 3) with good selectivity. Successful measurement of MP in spiked river water and apple samples demonstrated that as-proposed optical sensor provided an alternative strategy for real applications in environmental and food safety control.

12.
Talanta ; 192: 407-417, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348411

RESUMO

Volatile compounds (VCs) are almost harmful to health even at low concentrations and can be used as potential biomarkers to indicate the risk of diseases. Here we report a new "nanoporous pigment array" constructed with composites of chemically responsive dyes and four nanomaterials that were successfully prepared with expected properties for rapid and highly portable identification of trace VCs. Using the array, clear differentiation has been easily achieved for 16 common VCs at low ppm concentrations within four minutes through the distinguishable difference maps. Based on the pattern recognition of HCA, PCA and LDA, five parallel samples of each VC could be classified accurately with an accuracy of ≥ 91.2%. Additionally, the nanoporous pigment array shows modest stability against the changes in humidity or temperature over a wide range, excellent batch to batch reproducibility and a long shelf life. Compared to current colorimetric sensor arrays only based on diverse chemo-responsive dyes, the improved reactivity of the nanoporous pigment implies that the functionalization with particular nanomaterials is one of most promising paths to further improving the properties of arrays. Generally, the "nanoporous pigment array" presents excellent properties for fast identification of VCs.


Assuntos
Colorimetria/métodos , Corantes/química , Nanoestruturas/química , Compostos Orgânicos Voláteis/análise , Análise por Conglomerados , Análise Discriminante , Dissulfetos/química , Ouro/química , Nanopartículas Metálicas/química , Molibdênio/química , Nanoporos , Análise de Componente Principal , Pontos Quânticos/química , Reprodutibilidade dos Testes , Dióxido de Silício/química
13.
J Nanosci Nanotechnol ; 18(4): 2441-2449, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442913

RESUMO

Cartap residue poses a great threat to human health and its derivatives would remain in soils, natural waters and other environmental domains for a long time. Herein, a simple, rapid and ultrasensitive analytical method for the determination of cartap based on fluorescence resonance energy transfer (FRET) between Au nanoparticles (AuNPs) and rhodamine B (RB) is first described. With the presence of citrate-stabilized AuNPs, the fluorescence of RB was remarkably quenched by AuNPs via FRET. The fluorescence of the AuNPs-RB system was recovered upon addition of cartap, cartap can be adsorbed on the surface of AuNPs due to its amino group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the FRET between AuNPs and RB was weakened and the PL intensity of RB was recovered accordingly. A good linear correlation for detection of RB was exhibited from 1 nM to 180 nM, and the detection limit reached 0.88 nM, which was much lower than the safety limit required by USA, UK and China. To the best of our knowledge, it has been the lowest detection ever without the aid of costly instrumentation. This method was successfully carried out for the assessment of cartap in real samples with satisfactory results, which revealed many advantages such as high sensitivity, low cost and non-time-consuming compared with traditional methods.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ouro , Nanopartículas Metálicas , Tiocarbamatos/química , China , Humanos , Rodaminas
14.
Bioelectrochemistry ; 120: 183-189, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29289826

RESUMO

Many studies confirm that the aberrant expression of Cytokeratin 19 fragment 21-1 (CYFRA21-1) is highly correlated with non-small cell lung cancer (NSCLC), especially for squamous cell carcinoma. Herein, we report a sandwich-type electrochemical immunosensor based on signal amplification strategy of multiple nanocomposites to test CYFRA21-1 selectively and sensitively. The proposed immunosensor fabricated by three-dimensional graphene (3D-G), chitosan (CS) and glutaraldehyde (GA) composite on the glass carbon electrode (GCE) with a large surface area is prepared to immobilize primary antibodies (Ab1) and provide excellent conductivity. To further amplify the electrochemical signal, the trace tag on the foundation of gold nanoparticles (AuNPs) is coated with amino-functionalized carbon nanotube (MWCNT-NH2) nanocomposite through thionine linking, which provides more amino groups to capture more horseradish peroxidase-labeled antibodies (HPR-Ab2) and enhances the conductivity. Under optimal conditions, the developed immunosensor exhibits excellent analytical performance for the determination of CYFRA21-1 with a wide linear range from 0.1 to 150ng·mL-1 and a low detection limit (LOD) of 43pg·mL-1. Furthermore, satisfactory results are obtained for the determination of CYFRA21-1 in real clinical serum samples, indicating the potential of the immunoassay to be applied in clinical analysis.


Assuntos
Anticorpos Imobilizados/química , Antígenos de Neoplasias/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Imunoensaio/instrumentação , Queratina-19/sangue , Neoplasias Pulmonares/sangue , Aminação , Antígenos de Neoplasias/análise , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Quitosana/química , Condutometria/instrumentação , Espectroscopia Dielétrica/instrumentação , Desenho de Equipamento , Grafite/química , Humanos , Queratina-19/análise , Limite de Detecção , Neoplasias Pulmonares/diagnóstico , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura
15.
Talanta ; 178: 1046-1052, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136795

RESUMO

Chlorpyrifos is a commonly used organophosphorus pesticide in agriculture. However, its neurotoxicity poses a huge threat to human health. To detect trace amounts of chlorpyrifos, we herein developed a regenerative electrochemical aptasensor for the sensitive detection of chlorpyrifos. The nanocomposite consisting of copper oxide nanoflowers (CuO NFs) and carboxyl-functionalized single walled carbon nanotubes (c-SWCNTs) was prepared to improve the sensing performance for chlorpyrifos detection. Various characterization methods such as scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and cyclic voltammetry (CV) were used to demonstrate the successful fabrication of biosensor. Differential pulse voltammetry (DPV) was utilized to optimize test conditions and quantify chlorpyrifos. Under optimal conditions, the biosensor obtained a good linearity for chlorpyrifos ranging from 0.1 to 150ng/mL, with a lower detection limit of 70pg/mL. This aptasensor also exhibited high selectivity and outstanding repeatability, and was successfully applied to the determination of chlorpyrifos in spiked apple and celery cabbage with satisfactory recoveries. Furthermore, the sensor can be easily regenerated by urea for continuous application. With all the features, the proposed strategy provides an excellent platform for regenerative and selective detection of chlorpyrifos.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Clorpirifos/análise , Cobre/química , Nanotubos de Carbono/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Clorpirifos/metabolismo , Limite de Detecção , Modelos Moleculares , Conformação de Ácido Nucleico
16.
Talanta ; 178: 122-128, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29136801

RESUMO

Previous studies have confirmed that cytokeratin 19 fragment antigen 21-1 (CYFRA 21-1) serves as a powerful biomarker in non-small cell lung cancer (NSCLC). Herein, we report for the first time a label-free electrochemical immunosensor for sensitive and selective detection of tumor marker CYFRA21-1. In this work, three-dimensional graphene @ gold nanoparticles (3D-G@Au) nanocomposite was modified on the glassy carbon electrode (GCE) surface to enhance the conductivity of immunosensor. The anti-CYFRA21-1 captured and fixed on the modified GCE through the cross-linking of chitosan (CS), glutaraldehyde (GA) and anti-CYFRA21-1. The differential pulse voltammetry (DPV) peak current change due to the specific interaction between anti-CYFRA21-1 and CYFRA21-1 on the modified electrode surface was utilized to detect CYFRA21-1. Under optimized conditions, the proposed electrochemical immunosensor was employed to detect CYFRA21-1 and exhibited a wide linear range of 0.25-800ngmL-1 and low detection limit of 100pgmL-1 (S/N = 3). Moreover, the recovery rates of serum samples were in the range from 95.2% to 108.7% and the developed immunosensor also shows a good correlation (less than 6.6%) with enzyme-linked immunosorbent assay (ELISA) in the detection of clinical serum samples. Therefore, it is expected that the proposed immunosensor based on a 3D-G@Au has great potential in clinical medical diagnosis of CYFRA21-1.


Assuntos
Antígenos de Neoplasias/análise , Eletroquímica/instrumentação , Ouro/química , Grafite/química , Imunoensaio/instrumentação , Queratina-19/análise , Limite de Detecção , Nanopartículas Metálicas/química , Antígenos de Neoplasias/sangue , Eletrodos , Queratina-19/sangue , Modelos Moleculares , Conformação Molecular
17.
Rev Sci Instrum ; 88(3): 035111, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372441

RESUMO

In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

18.
J Microencapsul ; 33(6): 554-562, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27686628

RESUMO

In this work, maltodextrin-grafted-cinnamic acid (MD-g-CA) was synthesised and used as wall material to improve the stability of purple sweet potato anthocyanins (PSPa) via microencapsualtion. MD-g-CA was prepared through esterification in a two-step convenient synthesis procedure and characterised using infra-red (IR) spectroscopy. The IR data indicated the typical ester carbonyl stretching at around 1721 cm-1. Moreover, MD-g-CA could give about 40% inhibition of DPPH radical and present excellent UV-absorption, which were notably better than that of native MD. Maltodextrin (MD) and MD-g-CA were used to prepare PSPa microcapsules by spray drying. The stability of PSPa was evaluated by UV-Vis analysis. The microcapsules produced by MD-g-CA showed a spheres-like appearance with some cracks. Storage tests revealed that the degradation rate of PSPa embedded by MD-g-CA was much lower than that of free PSPa under the same condition. Thus, MD-g-CA could be used as an effective wall material to improve stability of anthocyanins.


Assuntos
Antocianinas/química , Cinamatos , Polissacarídeos , Cápsulas , Cinamatos/síntese química , Cinamatos/química , Estabilidade de Medicamentos , Ipomoea batatas/química , Polissacarídeos/síntese química , Polissacarídeos/química
19.
Talanta ; 161: 819-825, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769488

RESUMO

Herein, we have developed a simple, sensitive and paper-based colorimetric sensor for the selective detection of Chromium (Ⅵ) ions (Cr (VI)). Silanization-titanium dioxide modified filter paper (STCP) was used to trap bovine serum albumin capped gold nanoparticles (BSA-Au NPs), leading to the fabrication of BSA-Au NPs decorated membrane (BSA-Au NPs/STCP). The BSA-Au NPs/STCP operated on the principle that BSA-Au NPs anchored on the STCP were gradually etched by Cr (VI) as the leaching process of gold in the presence of hydrobromic acid (HBr) and hence induced a visible color change. Under optimum conditions, the paper-based colorimetric sensor showed clear color change after reaction with Cr (VI) as well as with favorable selectivity to a variety of possible interfering counterparts. The amount-dependent colorimetric response was linearly correlated with the Cr (VI) concentrations ranging from 0.5µM to 50.0µM with a detection limit down to 280nM. Moreover, the developed cost-effective colorimetric sensor has been successfully applied to real environmental samples which demonstrated the potential for field applications.

20.
Biosens Bioelectron ; 85: 684-691, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27258172

RESUMO

Multidrug resistance (MDR) has become a major obstacle to the adequate treatment of cancer patients; thus, there is an urgent need for exploring new strategies for early diagnosis of MDR in clinic. Here, we report a novel electrochemical biosensor based on nitrogen-doped graphene nanosheets functionalized with Au nanoparticles (N-G/Au) for sensitive and selective DNA detection. The highly conductive nanocomposite layer was characterized by using scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. DNA with thiol groups at the 5' end was immobilized on the N-G/Au surface via the strong Au-S bond. Differential pulse voltammetry was applied to monitor the target DNA hybridization event using methylene blue as an electrochemical indicator. Under optimal conditions, the biosensor could detect target DNA down to 3.12×10(-15)M with a linear range from 1.0×10(-14) to 1.0×10(-7)M, showing high sensitivity. Further, the sensing strategy was successfully used for detecting MDR1 DNA in real clinical samples. These results will aid in developing a new portable detection system for MDR that will allow effective diagnosis in the early stages of related cancer.


Assuntos
DNA/genética , Genes MDR , Ouro/química , Grafite/química , Nanoestruturas/química , Nitrogênio/química , Técnicas Biossensoriais , DNA/análise , Sondas de DNA/química , Sondas de DNA/genética , Técnicas Eletroquímicas , Eletrodos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Modelos Moleculares , Nanoestruturas/ultraestrutura , Hibridização de Ácido Nucleico/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...